Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion parameters to develop, experiment, and properly scale your generative AI ideas on AWS.
In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled versions of the models too.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that utilizes reinforcement discovering to improve thinking abilities through a multi-stage training process from a DeepSeek-V3-Base structure. An essential distinguishing feature is its support knowing (RL) action, which was used to improve the model's actions beyond the basic pre-training and fine-tuning process. By integrating RL, DeepSeek-R1 can adjust more effectively to user feedback and goals, eventually enhancing both significance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, indicating it's equipped to break down intricate questions and reason through them in a detailed manner. This assisted thinking procedure permits the design to produce more precise, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT capabilities, aiming to generate structured responses while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has recorded the market's attention as a versatile text-generation model that can be incorporated into various workflows such as representatives, logical reasoning and data analysis tasks.
DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion specifications, allowing effective inference by routing inquiries to the most relevant expert "clusters." This method enables the design to focus on different issue domains while maintaining general performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). to a procedure of training smaller sized, more efficient designs to imitate the behavior and thinking patterns of the larger DeepSeek-R1 model, utilizing it as a teacher design.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this model with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid harmful content, and evaluate models against essential safety criteria. At the time of composing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create multiple guardrails tailored to different use cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing security controls throughout your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you need access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limit boost, create a limit increase request and reach out to your account group.
Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For guidelines, see Establish approvals to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to present safeguards, prevent harmful content, and evaluate designs against crucial security criteria. You can implement precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to assess user inputs and design reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The general circulation includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After receiving the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following areas show reasoning utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, select Model brochure under Foundation models in the navigation pane.
At the time of composing this post, you can utilize the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a supplier and select the DeepSeek-R1 model.
The model detail page provides necessary details about the model's abilities, rates structure, and execution standards. You can find detailed use instructions, including sample API calls and code snippets for integration. The design supports different text generation jobs, consisting of material production, code generation, and concern answering, using its support finding out optimization and CoT thinking capabilities.
The page also includes implementation options and licensing details to help you get going with DeepSeek-R1 in your applications.
3. To begin utilizing DeepSeek-R1, select Deploy.
You will be prompted to configure the implementation details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters).
5. For Variety of circumstances, enter a number of circumstances (between 1-100).
6. For Instance type, choose your instance type. For optimal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised.
Optionally, you can set up innovative security and facilities settings, including virtual private cloud (VPC) networking, service function authorizations, and encryption settings. For many use cases, the default settings will work well. However, for production implementations, you may wish to examine these settings to align with your company's security and compliance requirements.
7. Choose Deploy to begin using the model.
When the release is complete, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock play area.
8. Choose Open in play area to access an interactive user interface where you can experiment with different prompts and change model specifications like temperature and optimum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimum outcomes. For instance, material for inference.
This is an outstanding method to check out the model's thinking and text generation capabilities before incorporating it into your applications. The play ground supplies instant feedback, helping you comprehend how the model responds to different inputs and letting you fine-tune your prompts for ideal outcomes.
You can quickly test the design in the playground through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run reasoning using guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to perform reasoning utilizing a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have developed the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime customer, configures reasoning criteria, and sends out a request to produce text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML solutions that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your data, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart offers two hassle-free approaches: utilizing the intuitive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both techniques to assist you pick the approach that finest suits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be triggered to produce a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The model internet browser shows available designs, with details like the company name and model capabilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card.
Each model card reveals key details, including:
- Model name
- Provider name
- Task classification (for example, Text Generation).
Bedrock Ready badge (if suitable), suggesting that this design can be signed up with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to conjure up the model
5. Choose the design card to see the model details page.
The model details page includes the following details:
- The design name and company details. Deploy button to deploy the design. About and Notebooks tabs with detailed details
The About tab includes important details, such as:
- Model description. - License details.
- Technical specifications.
- Usage standards
Before you deploy the model, it's recommended to evaluate the design details and license terms to confirm compatibility with your use case.
6. Choose Deploy to continue with deployment.
7. For Endpoint name, use the automatically produced name or develop a customized one.
- For Instance type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
- For Initial instance count, get in the variety of circumstances (default: 1). Selecting suitable circumstances types and counts is vital for cost and efficiency optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time inference is chosen by default. This is optimized for sustained traffic and gratisafhalen.be low latency.
- Review all setups for precision. For this model, we strongly suggest sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to release the model.
The implementation procedure can take a number of minutes to finish.
When deployment is total, your endpoint status will alter to InService. At this moment, the model is prepared to accept reasoning demands through the endpoint. You can monitor the implementation progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the implementation is complete, you can conjure up the design utilizing a SageMaker runtime client and integrate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the necessary AWS permissions and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for reasoning programmatically. The code for deploying the design is provided in the Github here. You can clone the notebook and range from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and implement it as shown in the following code:
Tidy up
To prevent undesirable charges, finish the actions in this section to clean up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you deployed the design using Amazon Bedrock Marketplace, complete the following actions:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace implementations. - In the Managed releases area, locate the endpoint you want to delete.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're erasing the proper deployment: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business construct ingenious services utilizing AWS services and accelerated compute. Currently, he is concentrated on establishing techniques for fine-tuning and optimizing the inference performance of big language designs. In his complimentary time, Vivek enjoys treking, enjoying movies, and attempting different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about building options that assist clients accelerate their AI journey and unlock service value.